The kick-off meeting of ECORES WIND, an ambitious European initiative aiming to contribute to the development of sustainable and environmentally conscious practices in the wind energy industry by providing a viable alternative to conventional resin systems, took place on 18th and 19th September 2024, at the Basque Technology Park (Euskadiko Parke Teknologikoa) in Zamudio near Bilbao. The initiative is led by GAIKER, member of Basque Research & Technology Alliance, BRTA, which is a private non-profit organisation with 39 years of experience dedicated to research and offering innovative tech solutions to companies in several sectors.
In addition to leading the project, GAIKER will work on characterizing the new materials to be developed, as well as the manufacturing processes. The Centre will also be in charge of scaling up the recycling processes defined by the partners developing the new resins.
ECORES WIND Overview, Consortium and Collaboration
ECORES WIND, a Horizon Europe-funded Research and Innovation Action, aims to revolutionize the wind energy sector by developing novel circular resinsystems tailored for composite structures in wind energy applications. The initiative will run for 42 months, focusing on enhancing the circularity of wind turbine components, particularly wind blades, to minimise their environmental footprint throughout their lifecycle.
ECORES WIND addresses environmental challenges associated with conventional resin systems in the conditions of a fast-evolving European wind power industry by developing alternatives that promote recyclability, extended lifespan, and efficient decommissioning processes. ECORES WIND seeks to introduce innovative circular resins combined with advanced disassembly strategies, enabling cost-effective decommissioning and material reutilisation.
The project is led by GAIKER with a consortium of 13 partners from across Europe, including leading research institutions, universities, and industry stakeholders. The diverse expertise of the partners will ensure a comprehensive approach to tackling the project’s objectives.
The Challenge Ahead: The urge for the wind power generation to go circular
ECORES WIND is set to make significant strides in the wind energy sector by advancing the development of sustainable materials and processes. Wind energy plays a critical role in enabling the European Union to decarbonise and develop a clean, resource efficient, and carbon-neutral future. Its current infrastructure used for clean electrical energy generation is, paradoxically, a source of contamination. While Europe is the main market for wind power generation and the global leader in offshore wind, the industry is expected to grow by 6.5% on average by 2030. The increase of the wind power capacity, which grew by more than 70% from 2019 to 2023. From 2024 to 2028, global wind power capacity is expected to continue growing rapidly. The Global Wind Energy Council (GWEC) has increased its growth forecast for 2024-2030 by 10%.
Wind farms also have a finite operational lifetime. For the oldest wind farms this is typically in the area of 15 – 25 years. As the European wind turbine fleet ages, a solution for EoL is paramount. Many of Europe’s onshore wind farms are approaching the end of their planned operational lifetime.
The strategies to address the replacement or repowering of wind farms are complex with legislative frameworks for repowering not yet in place. Most rotor blades are constructed from composite materials, including glass and carbon fibres, plastics, and resins which have a typical lifespan of 25 years and critically present challenges for recycling.
Specific objectives of ECORES WIND
Key Objectives and Innovations of ECORES WIND include the development of circular resin systems that enhance the recyclability and sustainability of wind turbine blades and incorporation of advanced disassembly strategies to ensure that wind turbine blades can be decommissioned, and their materials reused efficiently. The setup of the project is developed in close cooperation with RTOs, universities, SMEs and other relevant stakeholders to integrate the supply chain. This collaboration is essential to ensure the proposed solution is industry ready. Furthermore, the initiative encompasses an ecological impact evaluation of aimed solutions: ecological advantages of the developed resin systems will be evaluated and compared to state-of-the-art materials, aiming to establish benchmarks for improved sustainability in the wind energy sector.
For more information about the ECORES WIND project, please visit www.ecoreswind.eu
This project has received funding from the European Union’s Horizon Europe research and innovation programme under Grant Agreement No. 101148066.